
1

Shortest Paths

CONTENTS

l Introduction to Shortest Paths (Section 4.1)
l Applications of Shortest Paths (Section 4.2)
l Optimality Conditions (Section 5.2)
l Generic Label-Correcting Algorithm (Section 5.3)
l Specific Implementations (Section 5.4)
l Detecting Negative Cycles (Section 5.5)
l Shortest Paths in Acyclic Networks (Section 4.4)
l Dijkstra’s Algorithm (Section 4.5)

uHeap Implementations (Section 4.7)
uDial’s Implementation (Section 4.6)
uRadix-Heap Implementation (Section 4.8)

2

Problem Definition

Shortest Path Problem: Identify a shortest path from the
source node s to the sink node t in a directed network with arc
costs (or lengths) given by cij’s.

P A T H L E N G T H
1 - 2 - 4 - 6 6 0
1 - 2 - 4 - 5 - 6 9 0
1 - 2 - 5 - 6 4 5
1 - 2 - 3 - 5 - 6 1 0 0
1 - 3 - 5 - 6 8 0

Shortest Path: 1-2-5-6

1

2 4

3 5

6

10

25

35

20

15

35

40

30

20

s t

3

An Alternative Problem

Identify a shortest path from the source node s to every other
node in a directed network.

l In the process of determining shortest path from node s to
node t, we also determine shortest path from node s to
every other node in the network, which is specified by a
directed out-tree.

l We shall henceforth consider this more general problem.

1

2 4

3 5

6

10

25

35

20

15

35

40

30

20

s

4

A Linear Programming Problem

The shortest path problem can be conceived of as a minimum
cost flow problem: Send unit flow from the source node s to
every other node in the network.

Minimize

subject to

xij ≥ 0 for every arc (i, j) ∈ A

c xij
(i,j) A

ij
∈

∑

x x
(n 1) for i s,

1 for all i N {s},ij ji
{j:(j,i) A}{j:(i,j) A}

− =
− =

− = −
RST∈∈

∑∑

5

Assumptions
l All arc costs (or lengths) cij's are integer and C is the

largest magnitudes of arc costs.
uRational arc costs can be converted to integer arc costs.
u Irrational arc costs (such as,) cannot be handled.

l The network contains a directed path from node s to every
other node in the network.
uWe can add artificial arcs of large cost to satisfy this

assumption.

l The network does not contain a negative cycle.
u In the presence of negative cycles, the optimal solution

of the shortest path problem is unbounded.

l The network is directed.
u To satisfy this assumption, replace each undirected arc

(i, j) with cost cij by two directed arc (i, j) and (j, i) with
cost cij.

2

6

Applications of Shortest Paths

l Find a path of minimum length in a network.

l Find a path taking minimum time in a network.

l In a network G with arc reliabilities given by rij’s, find a
path P of maximum reliability (given by Π(i,j)∈P rij).

l As a subroutine in a multitude of problems:

uMinimum cost flow problem
uMulti-commodity flow problems
uNetwork design problems

7

Determining Optimal Rental Policy

l Beverly owns a vacation rental which is available for rent
for three months, say May 1 to July 31.

l She has received many bids, each having the following
form: the day the rental starts (a rental day starts at 3 p.m.),
the day the rental ends (checkout time is noon), and the
money (in dollars) the renter will pay for this duration.

l Beverly wants to determine the bids she should accept so
as to maximize her total revenue.

8

Determining Optimal Rental Policy (contd.)

l Define a node for each rental day from May 1 to July 31.

l Define an arc (i, j) for each bid - node i corresponding to the
starting day of the bid, node j corresponds to the ending
day of the bid, and cij is the bid amount.

l Define an arc (i, i+1) for each node i with zero cost
(denoting that the house is vacant).

l Show that there is a one-to-one correspondence between
the rental policy and the directed paths from the first node
to the last node.

1 2 3 4 5 6

9

Additional Applications

l Paragraph Problem: A paragraph is a sequence of
consecutive words which are partitioned into lines. The
paragraph problem consists of decomposing the words into
lines so as to maximize its total attractiveness.

l Optimal Tree Cutting Policy: You own a plot large enough
for a single tree. At various times, you cut down the tree to
obtain some wood to sell. You want to determine how to
maximize your revenue from selling the wood during the
next 100 years.

l Equipment Replacement Problem: A job shop must
periodically replace its capital equipment due to machine
wear. Obtain a replacement plan that minimizes the total
cost of buying, selling, and operating the machine over a
planning horizon of n years, assuming that the job shop
must have at least one unit of machine in service at all
times.

10

System of Difference Constraints

l We are given a following set of m difference constraints in n
variables and we wish to know whether it possesses a
feasible solution:

x(jk) – x(ik) ≤ b(k) for each k = 1, 2, … , m.

l Example:

x(3) – x(2) ≤ 2;
x(2) – x(1) ≤ -11
x(1) – x(3) ≤ 8;

x(3) – x(4) ≤ 5;
x(4) – x(1) ≤ -10

11

System of Difference Constraints (contd.)

l Example:

x(3) – x(2) ≤ 2;
x(3) – x(4) ≤ 5;
x(4) – x(1) ≤ -10
x(1) – x(3) ≤ 8;
x(2) – x(1) ≤ -11

l The system of difference constraints has a feasible solution
if and only if the following network has no negative cycle.

1 2

34
5

2
8-10

-11

s

1 2

34
5

2
8-10

-11

0

0

0

0

12

Distance Labels

l Most shortest path algorithms maintain a distance label d(i)
for each node i.

l The distance label d(i) represent the cost (or, length) of
some directed path from the source node s to node i.

l Distance labels are upper bounds on shortest path
distances.

1

2 4

3 5

6

10

25

35

20

15

35

40

30

20

10 30

90

7045

0

13

Optimality Conditions

Theorem 1: If distance labels d(i)'s represent shortest path
distances, then they must satisfy the following conditions:

d(j) ≤ d(i) + cij for every arc (i,j) ∈ A.

= cij + d(i) - d(j)

Theorem 1 (Alternate): If distance labels d(i)'s represent
shortest path distances, then they must satisfy the following
conditions: ≥ 0 for every arc (i, j) ∈ A.

s

i

j

d(s)

d(i)

d(j)

cij

cij
d

cij
d

14

Optimality Conditions (contd.)

Theorem 1: If distance labels d(i)'s satisfy ≥ 0 for every arc
(i, j) ∈ A, then they represent shortest path distances.

Proof. Let P be any directed path from node s to node k.

Since d(s) = 0 and ≥ 0 for each arc (i, j), we get

d(k) ≤

implying that d(k) is a lower bound on the length of every path
from node s to node j. Since d(k) is the length of some path
from node s to node k, it must be the shortest path distance.

cij
d

c (c d(i) d(j))

c c d(s) d(k)

ij
d

(i,j) P
ij

(i,j) P

ij
d

(i,j) P
ij

(i,j) P

∈ ∈

∈ ∈

∑ ∑

∑ ∑

= + −

= + −

cij
d

cij
(i,j) P∈

∑

15

Generic Label-Correcting Algorithm

algorithm label-correcting;
begin

d(s) : = 0 and pred(s) : = 0;
d(j) : = ∞ for each j ∈ N - {s};
while some arc (i, j) satisfies d(j) > d(i) + cij do
begin

d(j) = d(i) + cij;
pred(j) : = i;

end;
end;

Numerical Example:

1

2 4

3 5

6

10

25

35

20

15

35

40

30

20

16

Running Time of the Generic Algorithm

1. Time needed to perform an iteration: O(m)

2. Number of iterations: O(n2C)

uEach distance label d(i) is bounded from above by nC
uEach distance label d(i) is bounded from below by -nC
uEach iteration decreases some distance label by at least

one unit

3. Total running time: O(n2mC) {pseudo-polynomial time)

17

An O(nm) Implementation

1. Examine each arc one by one, check its optimality
condition, and update distance labels.

2. Repeat the above process (passes over the arc list) until in
the entire pass no distance label is updated.

Theorem. After kth pass, the algorithm will determine shortest
path distances to all those nodes whose shortest path
contains k or fewer arcs.

Proof: By induction on k.

Nodes with shortest paths
containing k arcs or less

s

i

k

p

j

l

q

18

An Improved Generic Algorithm

How to identify an arc violating its optimality condition quickly?

Property 1. If an arc (i, j) satisfies its optimality condition at
some step, then it continues to satisfy its optimality condition
until either d(j) increases or d(i) decreases.

Property 2. In the generic algorithm, distance labels only
decrease but never increase.

IDEA: Maintain a list, LIST, of nodes whose distance labels have
decreased and examine arcs emanating from such nodes. Stop
when LIST is empty.

19

An Improved Generic Algorithm (contd.)

algorithm label-correcting;
begin

d(s) : = 0 and pred(s) : = 0;
d(j) : = ∞ for each j ∈ N - {s};
LIST : = {s};
while LIST ≠ 0 do
begin

remove an element i from LIST;
for each (i, j) ∈ A(i) do

if d(j) > d(i) + cij then
begin

d(j) = d(i) + cij;
pred(j) : = i;
if j ∉ LIST then add j to LIST;

end;
end;

end;

20

Properties of Generic Algorithm

Property 1: At termination, predecessor indices give the Tree of
Shortest Paths.

Property 2: Whenever d(i) decreases, node i is added to LIST, and
O(|A(i)|) arcs are examined.

Property 3: -nC ≤ d(i) ≤ nC. Hence any d(i) decreases O(nC) times.

Property 4: The generic label-correcting algorithm runs in
O(∑i∈NnC|A(i)|) time = O(nmC) time.

21

Features of Generic Algorithm

l Quite flexible since nodes in LIST can be examined in any
order.

l By examining nodes in certain specific order we can obtain
an O(nm) algorithm - one of the best algorithms from the
worst-case complexity point of view.

l We can examine nodes in another order to obtain the best
algorithm from empirical point of view.

l An O(m) implementation for acyclic networks.

l An O(n2) implementation for networks with nonnegative
arc lengths.

22

Queue Implementation

l Examines nodes in the FIFO (first-in-first-out) order.

l Always removes nodes from the front of LIST for
examination.

l Always adds new nodes to the rear of the LIST.

l It can be shown that any node is examined at most n times.

23

Dequeue Implementation

l Very efficient in practice, but only pseudo-polynomial in
the worst-case.

l Examines nodes in a dequeue fashion [dequeue is a
doubly ended queue] .

l Always removes nodes from the front of LIST examination.

l Adds a new node to the rear of LIST if the node has never
been in the LIST before, otherwise to the front of LIST.

l Why the dequeue implementation runs very well in
practice?

24

Negative Cycle Detection

Property: If the network contains a negative cycle, then the
optimality condition can never be satisfied.

Proof: (i) Let W be a negative cost directed cycle. Hence

(ii) Optimality conditions imply that ≥ 0 for every arc (i, j) in
W.

(iii) Both (i) and (ii) cannot be true simultaneously.

Property: If the network contains a negative cycle, then the
label-correcting algorithm will never terminate.

c (c d(i) d(j)) c 0ij
d

(i,j) W
ij

(i,j) W
ij

(i,j) W∈ ∈ ∈
∑ ∑ ∑= + − = <

cij
d

25

Numerical Example of Negative Cycle Detection

l Apply FIFO label correcting algorithm and count the number
of times a node is examined.

l If a node is examined more than n times, then network
contains a negative cycle.

l Predecessor indices can be used to identify the negative
cycle.

2

1

3 5

4

10

5

10

20

10

-50

26

Shortest Paths in Acyclic Networks

l A network is called acyclic if it does not contain any directed
cycle.

l We can solve shortest path problem in acyclic networks in
O(m) time.

l For an acyclic graph, nodes can be topologically ordered,
that is, can be ordered such that for each arc (i, j) ∈ A, i < j.

27

Algorithm

algorithm acylic-shortest-path;
begin

order nodes in the topological order;
for each node i in the topological order do

for each arc (i, j) in A(i) do d(j) : = min{d(j), d(i) + cij};
end;

1

3

2

4

5

7

6

20

5

10

15

50 15

10

50

5 30

28

Proof of Correctness

Proof: By induction on the number of nodes examined.

Induction Hypothesis:

When the algorithm has examined nodes 1, 2, 3, ... , k-1, then it
has correctly determined shortest path distance to node k.

Consider a shortest path from node s to node k. Since the
network is acyclic, j < k.

s
kj

29

Dijkstra’s Algorithm

l Dijkstra's algorithm is one of the most efficient shortest
path algorithm. Dijkstra's algorithm is a label-setting
algorithm.

l Always examines a node with the minimum distance label
and no node is examined more than once.

l Nodes have distance labels which are either permanent or
temporary.

l Permanent labels are shortest path distances and do not
change.

l Temporary labels are estimates of shortest path distances
and may change.

l In each iteration, the algorithm makes a temporary
distance label permanent.

30

Numerical Example of Dijkstra’s Algorithm

1

2 4

3 5

6

10

25

5

20

15

30

10

30

5

31

Dijkstra’s Algorithm

algorithm Dijkstra;
begin

d(s) : = 0 and pred(s) : = 0;
d(j) : = ∞ for each j ∈ N - {s};
LIST : = {s};
while LIST ≠ φ do
begin

let d(i) : = min{d(j) : j ∈ LIST}; (Node Selection)
remove node i from LIST;
for each (i, j) ∈ A(i) do (Distance Update)

if d(j) > d(i) + cij then
begin

d(j) : = d(i) + cij;
pred(j) : = i;
if j ∉ LIST then add j to LIST;

end;
end;

end;

32

Analysis of Dijkstra’s Algorithm

Two Major Steps:

uNode Selection: Identifying a node i with the minimum
distance label.

uDistance Update: Scanning arcs emanating from node i

Running Time Analysis:

(i) Time for node selection (selecting minimum distance label
nodes) = O(n2).

(ii)Time for Distance Updates = O(∑i∈A |A(i)|) = O(m).

Total Time = O(m + n2) = O(n2)

33

Proof of Correctness

S : Set of permanently labeled nodes
: Set of temporarily labeled nodes

Induction Hypothesis:

l Distance label d(j) of each node j in S is the shortest path
distance.

l Distance label d(j) of each node j in is the shortest path
distance among those paths containing only the nodes in S
as internal nodes.

S

S

S S
s t

j

k

i

34

Heap Implementations of Dijkstra’s Algorithm (contd.)

l Dijkstra’s algorithm can be implemented in a variety of ways
using different heap data structures.

l A HEAP is a data structure which maintains a set H (heap) of
objects where each object i has an associated key[i] and
allows the following (heap) operations:

u insert(i, H) : Adding an object i to the heap H

u find-min(i, H) : Find and return an object i of minimum key

u delete-min(i, H) : Delete an object of minimum key

u decrease-key(value, i, H) : Reduce the key of object i from
its current value to value, which must be smaller than the
key it is replacing

35

Heap Implementations of Dijkstra’s Algorithm (contd.)

l While implementing Dijkstra’s algorithm, we store LIST (nodes
with temporary distance label) as a heap and d(i) as the key of
node i.

Heap find-min decrease-key Time of Dijkstra’s
algorithm

Binary heap O(log n) O(log n) O(m log n)

d-heap
(d = m/n)

O(d logd n) O(logd n) O(m logd n)

Fibonacci heap O(log n) O(1) O(m + n log n)

36

Dial’s Implementation

l An implementation of Dijkstra's algorithm which is very
efficient in practice.

l Uses the property that distance labels made permanent by
Dijkstra's algorithm are non-decreasing.

l Uses (1+nC) buckets, numbered 0, 1, 2, ... , nC.

l Bucket k holds all nodes whose distance labels equal k as
a doubly-linked list.

37

Dial’s Implementation (contd.)

1

2 4

3 5

6

1

8

2

9

6

3

5

4

8

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

38

Dial’s Implementation (contd.)

l Node Selection Operation: Scan the buckets in the
increasing order until a nonempty bucket is found. In the
next iteration, we start where we left off earlier.

l Distance Update Operation: Same as earlier except that the
contents of the buckets must be updated after each distance
update. If d(j) changes 6 to 3 then node j is moved from
bucket 6 to bucket 3.

l Time for node selections : O(nC)
l Time for distance updates : O(m)
l Total time : O(m + nC)

39

Radix Heap Implementation

l Due to Ahuja, Mehlhorn, Orlin and Tarjan.

l Improved version of Dial's implementation with running time
of O(m + n log(nC)).

l Under the similarity assumption (that is, C = O(nk) for some
constant k), the running time is O(m + n log n).

l Uses buckets of progressively larger widths which change
dynamically.

40

Radix Heap Implementation

Iteration 1. Make node 1 permanent and update distance labels

i 2 3 4 5 6
d(i) 13 0 15 20

bucket k 0 1 2 3 4 5 6 7
range (k) [0] [1] [2,3] [4,7] [8,15] [16,31] [32,63] [64,127]
content k {3} φ φ φ {2,4} {5} φ φ

1

2 4

3 5

6

13

0

5

20

9

15 2

4

1

2 4

3 5

6

13

0

5

20

9

15 2

4

0

13

0 20

∞

15

∞

41

Radix Heap Implementation (contd.)

Iteration 2. Make node 3 permanent and update distance label
of node 5

1

2 4

3 5

6

13

0

5

20

9

15 2

4

0

13

0 9

0

15

i 2 4 5 6
d(i) 13 15 9 ∞

bucket k 0 1 2 3 4 5 6 7
range k [0] [1] [2,3] [4,7] [8,15] [16,31] [32,63] [64,127]
content(k) φ φ φ φ {2,4,5} φ φ φ

42

Radix Heap Implementation (contd.)

Redistribute the range of bucket 4, and move nodes to the
appropriate buckets.

1

2 4

3 5

6

13

0

5

20

9

15 2

4

0

13

0 9

0

15

i 2 4 5 6
d(i) 13 15 9 ∞

bucket k 0 1 2 3 4 5 6 7
range (k) [9] [10] [11,12] [13,15] φ [16,31] [32,63] [64,127]
content (k) {5} φ φ {2,4} φ φ φ φ

43

Radix Heap Implementation (contd.)

Iteration 3. Make node 5 permanent and update distance labels
of node 6 to 14.

1

2 4

3 5

6

13

0

5

20

9

15 2

4

0

13

0 9

15

i 2 4 6
d(i) 13 15 14

bucket k 0 1 2 3 4 5 6 7
range (k) [9] [10] [11,12] [13,15] φ [16,31] [32,63] [64,127]
content (k) φ φ φ {2,4,6} φ φ φ φ

14

44

Radix Heap Implementation (contd.)

Iteration 3. Redistribute the range of bucket 3 and move nodes
to the right buckets.

1

2 4

3 5

6

13

0

5

20

9

15 2

4

0

13

0 9

14

15

bucket k 0 1 2 3 4 5 6 7
range(k) [13] [14] [15] φ φ [16,31] [32,63] [64,127]
content(k) {2} {6} {4} φ φ φ φ φ

45

Running Time Analysis

l Number of buckets K = 1 + log(nC) = O(log(nC))

l Number of iterations = n

l Time for identifying lowest-index nonempty bucket
O(K) per iteration and O(nK) overall

l Time for redistribution of bucket ranges
O(K) per redistribution and O(nK) overall

l Time for redistribution of nodes
O(K) per node and O(nK) overall

l Time for distance updates
O(m) for arc scannings and O(nK) for node distributions

l Total Time = O(m + nK) = O(m + n log(nC))

